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On The Capacity Of Channels With
Unknown Interference

M.V. Hegde W.E. Stark*
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Abstract %

We model the process of communicating in the presence of interference,
which is unknown or hostile, as a two-person zero sum game with the commu-
nicator and the jammer as the players. The objective function we consider is
the mutual information. The communicator's strategies are distribution/on
the input alphabet and on a set of quantizers. The jammer's strategies are
distributions on the noise power subject to certain constraints..AVe consider

pvarious conditions on the jammer's strategy set and on the communicator's
knowledge. For the case with the decoder uninformed of the actual quantizer
chosen we show that, from the communicator's perspective, the worst-case
jamming strategy is a distribution concentrated at a finite number of points t-
thereby converting a functional optimization problem into a non-linear pro-
gramming problem. Moreover, we are able to characterize the worst-case
distributions by means of necessary and sufficient conditions which are easy
to verify. For the case with the decoder informed of the actual quantizer
chosen we are able to demonstrate the existence of saddle-point strategies.
The analysis is also seen, to be valid for a number of situations where the -. _ p

- jammer is adaptive. .,-
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1 Introduction

The applicability of game-theoretic models in jamming situations is by now

well established [Blac 57], [Root 61], [McEl 83a], [McEl 83b], [Star 82], [Chan

85], [Peng 86]. In this paper we formulate fairly general models for a number of

jamming situations as two-person zero-sum games between the communicator and

the jammer. We allow the jammer the choice of one of a set of noise distributions

satisfying peak and average power constraints. By way of counter-measure the

communicator is allowed to randomize the input symbols as well as randomize

the quantizer at the output side. We intend the analysis to be applicable to the

performance of soft decision decoding for jammed channels.

Typically in a spread spectrum channel the performance in additive white Gaus- 10

sian noise is identical to the performance of non-spread systems; namely the bit

error probability decreases exponentially with signal-to-noise ratio. However, when

subject to worst-case partial-band or pulsed jamming (wherein power is concen-

trated in time or frequency to affect only a fraction of the symbols transmitted '"*%

while allowing the remaining to be received "error-free") the bit error probability ,

of a spread-spectrum system decreases only inverse linearly with the signal-to-noise

ratio. This is a significant degradation, typically of the order of 30-40 dB for a bit

error probability on the order of 10- s .

To remedy this situation most systems use some form of error-correction coding.

For example, it can be shown that with a hard decision decoder if the code rate a-

is small (< 1/2) and the jammer is allowed to pulse between several Gaussian £.

2
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distributions then there is no loss in signal-to-noise ratio necessary for reliable

communications compared to an additive Gaussian noise channel with the same

(average) power. So it can be said that coding (with hard decision demodulation)

neutralizes a (power constrained) jammer (i.e., makes the performance the same

as an additive white Gaussian noise)[Stark 85a],[Ma 84]. It can also be shown that

the worst case jamming strategy is to pulse between two zero mean Gaussian noise

distributions, one of which has zero variance.

As has been well known in the communication field, hard decision decoding

loses roughly 2 dB in signal-to-noise ratio compared to soft decision decoding.

Thus considerable interest has focused on soft-decision decoding. One problem

that has been observed is that if a (soft) decoding algorithm designed for a non-

jammed channel is used for a jammed channel then the performance is extremely

poor when the jamming strategy is optimized. One method for "overcoming" this

difficulty is to assume the jamming noise is one of two distributions (usually one

having zero variance called the "off" state and the other called the "on" state)

and that the decoder knows when the jammer is "on" and when the jammer is

"off". Using this side information, similar results to the hard decision case have

been obtained for the soft decision case [Simo 85] (for small rates there is no loss

in performance). However assuming this information is available is assuming away

the problem. Most systems analyses do not incorporate jamming strategies that

affect the reliability of the side information.

Thus there has been considerable interest over the last few years on decoding

3.
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algorithms that do not assume side information and do not do hard decision de-

coding. However, most of these algorithms still assume the jammer pulses between .

one of two levels. In this paper we investigate the case of a decoder that processes .5.- .5
symbols from a finite alphabet and where the only constraints on the jammer are .. .

average and peak power. We formulate the problem as a game with two play-

ers. The jammer whose strategy set consists of distributions on the power of the

jamming noise, and the communicator, whose strategy set consists of a pair of dis-

tributions, one on the input alphabet and one on the set of quantizers. We look for

worst-case jamming strategies and investigate when the game admits of a saddle
5%

point. We do the analysis using mutual information as our objective function. . ..5'

We consider a modulator that transmits one out of M signals. This trans-

mitted signal is denoted by the random variable X. The received signal which -

has been corrupted by the jammer in some fashion is demodulated and quantized

into one of L values. In order to disallow the jammer from using knowledge of !.

the quantizer in designing his worst-case strategy, we allow randomization of the ...

quantizer over some given set of quantizers. Clearly such randomization increases

the the size of the communicator's strategy set. Thus, we view this situation as

a game with two players; the jammer and the communicator. The jammer selects

the noise in the channel and the communicator chooses the encoder, the decoder

and the quantizer. The strategy set for the jammer is the set of all distributions on

the power of the jamming noise subject to the given constraints on the peak and

average power. The strategy set for the communicator is the set of all distributions

42
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on the input alphabet and on the set of quantizers.

"v For this general set up we show that the worst case jamming strategy from the
communicator's perspective is to pulse between a finite number of power levels.

We also consider the case of random decoding strategies where the demodulator

output is quantized into a finite number of outputs by a randomized quantizer,

-" i.e., the quantization thresholds are random.

For this case we show that the optimal randomized quantizer can perform bet-

ter than the nonrandomized quantizer and that from the jammer's point of view

the worst-case distribution of the thresholds is concentrated on a finite number of

points. Our basic model can be easily seen to fit a frequency-hop communication

system in which the modulation utilizes an M-ary signal set, which in many cases

are orthogonal signals. The spread-spectrum bandwith is divided into a large num-

ber of frequency slots. Each possible modulated signal is hopped from frequency

-, slot to frequency slot using a pseudo-random hopping pattern. During each hop

,. one of the M signals is transmitted. There are two important special cases. First,

all modulated signals use the same hopping pattern and second, each signal has

its own hopping pattern. The demodulator is a coherent or noncoherent matched

filter which is then quantized to a finite number of values.

The remainder of the paper is organized as follows. In Section 2 we define the

models we will be considering and give examples for which our models apply. In

. .Sections 3 and 4 we derive our results concerning the worst case jamming strategy

- and the optimal quantizer strategy for the cases with decoder uninformed about
'VeZI

,~4~
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the actual quantizer chosen and with decoder informed about the actual quantizer

chosen respectively. Finally in Section 5 we discuss our results and state our .

conclusions and extensions.

2 Channel Models

In this section we describe the models we use in the subsequent analysis. In

all cases we consider a modulator that transmits one out of M signals in D

dimensions (D < M). This transmitted signal is denoted by the random variable

X. The received signal which is corrupted by the jammer in some fashion is

demodulated and quantized into one of L values. The received signal is denoted :%

by the random variable Y. (Y can also be a random vector without changing any

of the following analysis). r -

The general philosophy that we will use is that of game theory with the players

being the jammer and the communicator. The jamming strategies are distributions

dF on D random variables, Z1 , Z2 , ... , Z . These random variables represent

the power of the jammer in each of the signal dimensions and are modelled as

modulating a generic noise variable present in the channel. For example, if D = C.'

1 and N is a zero-mean, variance 1 Gaussian random variable then the januner's

noise may be of the form Z1N. The jammer, however, has an average power

constraint and a peak power constraint. More generaily the jammer is constrained

by

* 6
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J i f(zlz 2 1"...zD)dF(zz 2 .  ZD) S Ki (1)

and
-0 < Zj b) 3=1,. D (2)

where bi is the peak power constraint and f(zi, ... , z) is some continuous

functional of (zI, ... , zD). For average power constrained channels with no peak

constraint we let b, become very large.

The output of the demodulator is quantized into one of L values, say 0, 1 ... ,L-

1. The output of the quantizer, Y, is also the output of the channel for coding.

The strategies for the communicator are to choose a distribution, dG(O), on the -V

quantization thresholds and a distribution, dP(x), on the input alphabet. We will W.

let ( parametrize the quantizers and assume 9 is some compact subset of R (0 '

-P will be used to denote both the random variable as well as a particular realization).

For each (z1 , ... , ZD) and 0 there is a probability distribution on the output of the

channel given the input of the channel:

7, Prob{Y =IX =x,= O,Z= z,ZZ= z,. ZD= z =p(yIX, O,z2,z,Z....zD).'p .
* '"

(3)

The above model describes the input output relation of the channel for a particular
.'

symbol. In addition we model the channel as being memoryless.

We now introduce some notation. Let:

, 'A = {0, 1,.., M - 1} be the input alphabet,

7
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B = {,1,...,L - 1} be the output alphabet,

9 be the quantizer parameter space (some compact subset of R)

Z be (ZI, ZD), (0 <" Z, <5 b,) "

p(ylx, 9, z), the transition probability from x to y given 9, z, and

Py, (O, z) the corresponding stochastic matrix, Pyz(O, z) = [p(ylx, 9, z)].

We assume that

(i) p(ylx, 0, z) is continuous in z for all 0, x and s

(ii) p(ylx, 0, z) is continuous in 0 for all x, z.

Let S denote the set of all probability distributions on the Borel sets of K = =

(Zl,...,zD) :0 < zi <5 bi}, and Jk

J*.

I(G, P; F) = I ( L P(9z)dG(O)dF(z))

\K / 
'*dFz)

=1 Ij P FX(O)dG(O))

I -P(G,F (4) ,

where I (-Prx(G, F)) is the mutual information whenever X and Y are related

by the stochastic matrix Py..

The performance measure we are interested in is the largest rate such that

nearly error-free communication can be achieved, i.e. channel capacity. Another

performance of interest is the channel cutoff rate, R0 , since many researchers be-

lieve this to be a practical limit to the set of rates for which reliable communication . l
8
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is possible. Similar results to those in this paper can be derived with Ro as the

.N performance measure (see [Hegd 87]).

We consider two different information structures for the communicator:

I. The decoder is unaware of the actual quantizer chosen but only knows the

distribution dG(O) on the set of quantizers. The jammer knows only the set

of quantizers but not the distribution dG(O) chosen by the communicator.

He is also awcare that the decoder does not know the actual quantizer chosen.

II. The decoder knows the actual quantizer chosen. Again the jammer knows

only the the set of quantizers. He also knows that the decoder is aware of

the actual quantizer chosen.

P iCase I is seen to apply to situations where, for reasons of implementation perhaps,

the decoding is fixed and not altered with the specific quantizer chosen. It may also

be viewed as worst-case in the sense that the decoder's knowledge of the specific

quantizer and the utilization of such knowledge can only improve the communi-

cator's performance. When there is no randomization of the quantizer, i.e. the

quantizer is fixed, Cases I and II are the same and our results for both cases apply

to that situation. Also several special jamming strategies are of interest because

of correspondence with physical problems. We will classify the cases as follows.

A. Arbitrary joint distribution on Z1, Z2 , ... , ZD.

B. Z, = Z2 =...ZD = Z.
Z.

C. One dimensional jamming, i.e., at most one of the random variables Zi $ 0.

I.-. 9
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D. Independent jamming, i.e., Z 1 , Z 2 , ZD are independent.

Case B corresponds to the physical situation where the jammer is not able to

place different amounts of power in different dimensions of the signal space. Case

C corresponds to the case where only one of the dimensions can be jammed at once.

Case D corresponds to a frequency-hop communication system with independent

hopping for the different symbols. The standard game theoretic description is

given below.

Communicator's Perspective

The communicator is interested in the maximum rate at which information can be

reliably transmitted no matter what strategy the jammer employs. The communi-

cator designs his system assuming the jammer will somehow find out the strategy

he is using and then choose the worst possible distribution on the power levels. In

Case I the largest rate for which information can reliably be transmitced is

p-' max min I(G, P; F)
GP F

*: **.where I(G, P; F) = I(X; Y) when (dG, dP) is chosen by the communicator and dF

is chosen by the jammer. That this is the maximum rate of reliable transmission

is well known since what we are dealing with is a compound channel with a finite
-I. ''I"

input alphabet and a finite output alphabet [Csiz 81, pgs. 172-173].

Jammer's Perspective

." '1
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-. * - -. "-**j



The jammer is interested in the minimum rate such that information can not be

reliably transmitted at any higher rate no matter what strategy the communi-

"-: cator employs. The jammer designs his system assuming the communicator will

somehow find out the strategy he is using and then design the optimal communi-

cation system. In Case I the smallest rate that the jammer can guarantee reliable

communication can not be above is

min max I(G, P; F).
dG ,dP

(4 That this is the smallest rate the jammer can guarantee is obvious since for each

F the rate above which reliable communication is impossible is max I(G, P; F).
dG4dP

In case II the appropriate mutual information can be written as an expectation of

* the mutual information for a fixed 0:

I(G, P; F) = EG(I(O,P; F))

where EG refers to taking expectations w.r.t. dG and 1(0, P; F) - I(X; YjO).

In all of our analysis we assume that the jammer and the decoder/quantizer

have complete information about the set of strategies possible for each other so

that no secret information is considered. As mentioned previously, the performance

measure we consider is the largest rate such that reliable communication (in the

.' . sense of arbitrarily small error probability) is possible. The type of channels we

*: are considering are known as compound channels. We consider the strategies

(distributions) by the jammer to be constant for a whole codeword as opposed to

S." (possibly) changing after each symbol of a codeword which would correspond to an

J% A 11 -



arbitrarily varying channel. For compound channels the capacity with finite input P'I-
P

and output is well known to be the maximum of the minimum mutual information. a.

The minimum is over all possible transition probabilities and the maximum is over

all probability distributions on the input to the channel. Thus, using the maximum

of the minimum mutual information as the performance measure corresponds to the

largest rate such that reliable communication is possible no matter what strategy

the jammer employs. We are now ready to state the results. In brief our results

show that when the decoder is informed of the quantization rule then (under

a compatibility assumption), there is a saddlepoint in cases A and B, i.e. the I_

jammer's rate and the communicator's rate are equal (Theorem 5). However, when'. i.

the decoder is not informed of the quantization rule then the jammer's rate and

the communicator's rate may differ. However the optimal distributions, F from

the communicator's point of view and the G from the jammer's point of view are

finite dimensional (in all the cases A, B, C and D) (Theorem 1). This converts a

functional optimization problem into a finite- dimensional non-linear programming -

problem. J NIP

3 Case AI: Decoder Uninformed

The communicator has to determine the distributions (dG(O), dP(z)) that

maximize the amount of information I(G, P; F) transmitted. The jammer has

to find the noise distribution dF(z) to minimize the information received by the

decoder. Thus, the quantizer's goal is to achieve

12



'. ". max min I(G, P; F)
- dG(9),dP(z) dF(z)

U

whereas the jammer wants to achieve
4• ,

S min max I(G, P; F).
.",4. ,dF(z) dG().dP(z)

In this section we show that for any choice of strategy of either player there is
'4

a simple characterization of the optimal reaction strategy of his opponent.

r Theorem 1: a) The jammer can achieve the minimum in max m I(G, P; F)
dG(9), dP(z) dF(z)

with a distribution concentrated at at most M(L - 1) + 2 points.

b) The communicator can achieve the maximum in min max I(G, P; F)
dF(z) dG(9), dP(x)

" with a distribution concentrated at at most M(L - 1) + 1 points.

Discussion: Theorem 1(a) says that the communicator in trying to achieve

max min I(G, P; F) has to consider only reaction strategies of the jam-
", ,dG(9), dP(x) dF(z)

mer that have a finite number of points of support, i.e. for each (dG(O), dP(x))

chosen by the communicator the worst-case janmer distribution may be assumed

" -'to be concentrated at a finite number of points and this number is bounded uni-

,-- ,:.formly (in (dG(O), dP(x))) by M(L-1)+2. It follows that for a fixed quantizer (i.e.

no randomization of the quantization) the worst-case jammer is one who chooses

such a finite-dimensional distribution. Similarly Theorem 1(b) says that the jam-

• mer may, from his perspective of trying to achieve min max I(G, P; F),
dF(s) dG(9), dP(x)

consider only finite dimensional reaction strategies on the communicator's part.

13
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To prove these results we use the following facts: (1) the convexity and con-

cavity properties of the mutual information function (it is convex in the channel

transition matrix and concave in the input distribution), (2) the equivalence of

weak convergence with Levy convergence in our situation [Hegd 87] which we use

to show the continuity of our objective function in the strategies as well as com-

pactness of our strategy sets (this allows us to conclude that there is a worst case

jamming strategy and a best case communicator strategy) and (3) Dubins' Theo-

rem in order to demonstrate that the optimal reaction strategies are described by

distributions concentrated on a finite number of points. Dubins' Theorem allows

the extreme points of certain convex sets to be written as finite linear combinations

of extreme points of larger convex sets.

Proof of Theorem 1:

We prove part (a) in detail. The modifications required to obtain part (b) are

obvious. We start by first proving two intermediate results. Lemmas I and 2.

Lemma 1: I(G, P; F) is a Levy-continuous functional of dF(z) for any fixed

dG(0 1L. dP (x)).

Proof of Lemma 1:

First we note that for every (dG(O).dP(x)). I(P,,) is a convex function of

P ' ICsiz 81, pg. 50] i.e..

I-=rP" + (1- C)P) < aI(P') + !o)I(P.r) 0 < c < 1

and

S."

S.ply!X.zI plilx. 0.z &(09)

'4
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is a continuous function of z (since p(ylx, 0, z) is continuous in z and p(ylI, 0, z) <

1, this follows from the Dominated Convergence Theorem). Also

p(ylX) 'K J p(ylx,O,z) dG(O) dF(z)

•- p(ylx,z) dF(z).
w" K

Hence p(ylx) is a Levy-continuous functional of dF(z) and therefore P. is a

Levy-continuous functional of dF(z).

.- Now I(G, P; F) is a convex function of P,. and hence it is continuous in

the interior of the finite-dimensional set W of all stochastic matrices. (Thus,

I(G, P; F) is continuous at any point P,. such that at least one row of P, is

-. not a one point distribution, i.e. Py, is not deterministic). Hence, I(G, P; F) is

a Levy-continuous function of dF(z) for any fixed (dG(O), dP(x)). 0

Let S z set of all probability distributions on the Borel subsets of K, and

. S' = {dF(z) E S: f(z) dF(z) = Ki} (5)

be a hyperplane in S.

Lemma 2: I(G, P; F) achieves its maximum (minimum) in S'.

Proof of Lemma 2:

We note that S is compact in the Levy topology [Hegd 87, Appendix C1.

Also S' is a hyperplane in S which is closed (since dF(z) -+ fK f(z) dF(z)

. is Levy-continuous) in the Levy topology.

Hence S' being a closed subset of a compact set is itself (Levy)compact.

15
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Thus Lemma 1 asserts that for fixed (dG(O), dP(x)),I(G,P;F) is a Levy-

continuous functiornal on the compact set S1. Hence it achieves its minimum (max- .-

imum) at some point dF*(z) E S'. 0

The above lemmas are now used to complete the proof of Theorem 1.

From Lemma 2 we know that I(G, P; F) achieves its minimum in S'. Denote '

the corresponding P.. as P;= [p*(ylx)] i.e.

P-, =K p(ylx, 0,z) dG(O) dF*(z). (6) -, .*

Now consider the set N I

A= dF(z) 1 S p(yIx, z,O) dG(O) dF(z) .-

p'(ylx), x E A,y E B'1 (7)

where B' = {,1...L-2}.Theset A is theintersectionof S with M(L-1)+I

hyperplanes viz. S' and the M(L - 1) hyperplanes

={dF(z) E S': I p(ylx,z,O) dG(O) dF(z) = p(ylx)}. (8)

Furthermore:

S is convex.

S is linearly bounded (S being compact in a metric space is bounded and hence

its intersection with any line is bounded).

S being a compact subset of a metric space is closed and any line I in the metric ',*

space is closed. Thus S is also linearly closed. -

16 a'
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Hence we have that S is a convex, linearly closed and linearly bounded set.

By Dubins' Theorem [Dubi 62] we can conclude that since A is the intersection

of S with M(L - 1) + 1 hyperplanes, every extreme point of A is a convex

combination of M(L- 1) + 2 or fewer points of S.

From our construction of A we know that I(G, P; F) is constant on A. Hence

for fixed (dG(O), dP(x)) , I(G, P; F) assumes its minimum value at an extreme

point of A also.

Hence, I(G, P; F) assumes its minimum value at some point dF(z) which is

a convex combination of M(L - 1) + 2 or fewer extreme points of S.

Since the extreme points of S are the one-point distributions, we can finally

assert that for each (dG(O),dP(x)) the jammer can achieve the minimum in

max min I(G, P; F)
dG(O), dP(z) (GF(,)

with a distribution concentrated at M(L - 1) + 2 points. This concludes the

proof of (a).

For channels which are symmetric for each 0 and z i.e. p(ylzx, z, 9) is some

*. permutation of p(ylxi,z,0) we see that the set A is actualy the intersection of S

with (L - 1) + 1 hyperplanes only and hence part(a) of the theorem holds with

(L - 1) + 2 = L + 1 instead of M(L - 1) + 2. For M-ary symmetric channels,

i.e. channels with M inputs and M outputs and such that for each 0 and z,

Sp(yilxi, z,O) = 1 - e and p(yilz,,z,O) = i 3 j, the bound on the number

of points of support reduces to 3.

17
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For (b) we note that the jammer wants to achieve - !'

min max I (G, P; F). ,
dF(z) dG(9),dP( r)

This may be written as ...

.-

min max C(G,F)

dF(z) dG(9)

where C(G, F) z max I(G, P; F).

We note that similarly to Lemma 1 for any fixed dF(z), C(G, F) is a con-

tinuous functional of dG(O). (Simply note that C(G, F) being the maximum of

functions convex in P, is also convex in P,. and proceed as before). Using our -

hypothesis that p(ylz, 0, z) is continuous in 9 we can show that ,.,

min max C(G, F) '.
dF(z) dG(O)

can for any dF(z) be achieved by the decoder/quantizer by a distribution dG(O)

that is concentrated at at most M(L - 1) + 1 points.

Again for symmetric channels we note that part(b) of the theorem holds with

L instead of M(L - 1) + 1. For M-ary symmetric channels this number is 2. The

number of points of support is one less than Case A as we have not imposed any

constraints on the distributions dG(O) chosen by the quantizer. 0

3.1 Necessary and Sufficient Conditions

We now characterize the aforementioned finite-dimensional distributions by

means of necessary and sufficient conditions. We first briefly introduce the neces-

sary definitions and results from optimization theory and then specialize them to

our cases. b

18
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Let 0I be a convex set and let f be a function from SI into R. For some

fixed x0 if for all x
-%

lim f(( - a)X0 + ax) - f(Xo)) (9)I.1 at C

exists f is said to be weakly differentiable at x0 and the above limit is denoted

as f,' (x), the weak derivative at x0. If f is weakly differentiable in f at x0 for all

x0 in f, f is said to be weakly differentiable in 0. We now state an Optimiization

Theorem that follows from [Luen 69, pg. 178].

Optimization Theorem: Let f be a continuous, weakly differentiable, convex-

cap (concave) map from a compact, convex set to R. Let

4 i~ C sup f(x). (10)

% Then

1. C = max f(x) = f(xo) for some x0 E 0.

2. A necessary and sufficient condition for f(xo) - C is f' (x) < 0 for

"" -. "all x E f2.
allE0

Constrained Optimization Theorem: [Luen 69, pg. 217] Let 0I be a convex

subset of a linear vector space and f and g convex-cap functionals on Q to

R. Assume there is an xi E fl such that g(xi) < 0 and let

sup f .(11)

g(X) < 0

19
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If C' is finite then there exists a constant A > 0 such that

i.-, *!:

C"= sup [f(X) - Ag(x)]. (12) 5 ..

Furthermore if the supremum in the first equation is achieved by x0 E fQ and

g(xo) _< 0, it is achieved by x0 in the second equation and Ag(zo) = 0. [Luen

69, pg. 217]. -:

Now given any dG(O) and the power constraint we define

U,(Kj, G) h sup - I(G,P; F) (13)
F ES

where hF , fK f(z) dF(z). To simplify notation we define .. .

D: S -- R by D(F) = f(z)dF(z) - Ki. (14)

Using the Constrained Optimization Theorem we will infer in Theorem 2 that

there exists a non-negative constant

A = A(G, Kj) for D(F) 5 0 such that

U(G, Kj) = sup [-I(G, P; F) - AD(F)]. (15)

We now formulate necessary and sufficient conditions for the characterization of

the optimal distributions of Theorem 1 in the following two theorems. ""

Theorem 2: U(G, Kj) is achieved by a distribution Fo E S satisfying D(F) :%

0 and a necessary and sufficient condition for U(G, Kj) = -I(G, P; Fo) is that

for some constant A > 0

K [-i(z;G, Fo) - Af(z)]dF(z) _ -I(G,P;Fo) - AKj (16)

20 *
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for all F E S

where i(z;G,Fo) = p(x) p(yz) log p(yx,z) dF (z)
Z p(x) fp(yIx, z) dFo(z)

Proof of Theorem 2:

!% -. D : S -* R is clearly linear, bounded, convex-cap, continuous and weakly

differentiable in S with D', (F2 ) = D(F) - D(F I ). By choosing F, as a

distribution with unit mass appropriately we can infer that D(F) < 0.

N :Next we show that I(G, P; F) is convex in F.

I(G,P;c F, + (1 - a)F2 ) = I(Py= (G, aF, + (1 - a)F))

f = x , ( z) dG(O) (adF + (1- a)dF2))

*- = I(a TP,(G; FI) + (1 - a) P ,(G; F2 ))

I(aTPX+(l- a')T

<a(Pl ) + (1 -)I(P2)

(by the convexity of I(.) w r. t Py )

- aI(G, P; F) + (1 - a) I(G, P; F2 ). (17)

Then, since U.(G,K.,) is finite we can infer from the Constrained Opti-

mization Theorem that there exists some constant A > 0 such that Uc =

sup [-I(G,P;F) - AD(F)].

Now N 3how that I(G, P; F) is weakly differentiable at all F E S.

Let L(a) = I(G, P; aF + (1 -a)F). Since I(G, P; F) is convex in F, L(a)

L(a) - L(O)
is convex in a. Therefore is non-decreasing in a and bounded

.. L(a) - L(0)
from below and thus lim exists. Furthermore0 aa

21
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Lemma 3: I' (G,P;F2) f i(z;G, FI) dF 2(z) I(G,P;F).

Proof of Lemma 3:

We now have that I(G, P; F) - A D(F) is convex-cap, continuous and weakly . >.

differentiable in F. Thus, by the Optimization Theorem there is a distribution

function F0 E S such that UC(G, Kj) I(G, P; FO) - AD(F). The necessary

and sufficient condition becomes -" :;

-I'G,P;Fo' (F) - A D'o (F) S0 for all F E S (18)

or

K [-i(z;G, Fo) - Af(z)]dF(z) _ -I(GP;Fo) - AhF. (19)

If hF < K. the power constraint is trivial and the constant A is zero i.e. -

D(FO) < 0 but A D (FO) = 0. Thus the necessary and sufficient condition is

established.

From Theorem 1 we know that it is possible to find F0 from the set of

distributions with a finite number of points of support. Finding such an F0

entails determining the set of points of increase as well as the amounts of increase

of F0 at those points. Let E0 denote the set of points of increase of F0. We

now show

Theorem 3: Let F0 be a probability distribution satisfying the power con-

straint. Then F0 achieves U,(G, K.j) iff for some A > 0

CI) -i(z; G, Fo) _ -I(G, P; Fo) + A(f(z) - Kj)

for allz E K.

22 p.' *
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C2) -i(z; G, Fo) = -I(G, P; Fo) + A(f(z) - Kj)

for all z E E0 .

q. Proof of Theorem 3:

The sufficiency is clear because if both conditions Cl and C2 the conditions of

' ': Theorem 2 hold. We show the necessity.

Assume that F0 is "optimal" but C1 is not true. Then there must exist some

zi E K such that -i(z; G, Fo) > -I(G, P; Fo) + A(f(z) - K.j). Let FI(z)

be a probability distribution with a unit increase at such a point zi E K. Then

'K [-i(z;G, Fo) - Af(z)] dFi(z) > -I(G,P;Fo) - AKj (20)

"'

which contradicts Theorem 2. Hence Cl must be true.

Now assume that F0 is "optimal" but C2 is not true. Then since Cl is true

-i(z; , Fo) < -I(G, P; Fo) + A(f(z) - K.j) for all x in E' where E' is

some subset of Eo with positive measure, i.e.

] d Fo(z) = c > 0. (21)

Since f,-E, dFo(z) = 1-c and on E0 - E'

" (z; G, Fo) = I(G, P; Fo) + A(f(z) - K.) (22)

and

IK [i(z; G, Fo) - AF(z)] dFo(z) = J [i(z;G, F)- Af(z)J dFo(z)

+ J [i(z;G, Fo) - -((z)) dFo(z)

-g 23
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[' F) A( (z) dFo(z) .

we have

I(G, P; Fo) - AKj < -I(G, P; Fo) - AKj i.e. a contradiction. (23)

Hence C2 must be true too. -

Theorems I and 3 reduce the calculation of the distributions describing the

reaction strategies to finite-dimensional non-linear programming problems. They

can be used to simplify the search for conservative strategies which are optimal for

either player. In Theorem 4 below we assert the existence of conservative strategies

for each player.

Theorem 4: For the game described in Case Al, there exists a conservative

strategy (dG(O), dP(x)) for the communicator and a conservative strategy dF(z)

for the jammer, i.e. strategies such that ':

i)min I(Z,T;F) = max min I(G, P; F) and (24)
dF(z) dP(x)dG(O) dF(z)

ii) max ,rG, P; T) = min max I(G, P; F) (25)
4P(r!,dG(O dF(z) dP(xl,dG(O)"2 ,

Proof of Theorem 4:

From Lemmas 1 and 2 we note that

a) I(G, P; F) is lower-semicontinuous in dF(z) for each (dG(O), dP(x)) and

24
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b) There exists (dG(O), dP(x)) E I(G, P; F) is lower semi-compact in dF(z).

, . Theorem 4(i) now follows from a fundamental existence theorem [Aubi 82, pg 209,

Th. 1]. Theorem 4(ii) follows similarly. C

3.2 The Remaining Cases

Case BI: With F(z) now recognized as a one-dimensional distribution Theo-

reins 1 and 2 are easily seen to be true.
M

Case CI: We redefine S as follows: S = U Li where Li is the space of

-i=1

.q :product distributions such that

Pr(Z 0) > 0

-Y '* Pr(Zj = 0) =1 j i.

By previous arguments each Li is Levy compact and hence so is S. Now the

proofs of Th. 1 and Th. 2 follow as before.

Case DI: We perform the analysis by fixing D - 1 of the D distributions

dF1 ,..., dFD. By minor modifications in the proof of Lemma 1 we see that I(X; Y)

is a Levy continuous functional of dFi(z) for each i. Defining S and S' similarly

except that now both are spaces of distributions of dFi(zi) instead of dF(z) we see

that for each (dG(O), dP(x)) the jammer can achieve the minimum in

max mi n I(G, P; F) (26)
(dG(l),dP(x)) dF(s)=dFI (z),dF(x2 )...dFD(zD)

25
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Si
with a distribution dF, concentrated at at most M(L - 1) + 2 points.

Since i is arbitrary we can assert that the jammer can achieve the minimum

in (16) with distributions dFi, i = 1 .. D each of which are concentrated at at

most M(L - 1) + 2 points. Part (b) of Theorem I and Theorem 2 are easilvy seen :..

to be true as stated for this case.

4 Case AIl: Decoder Informed

We have an arbitrary joint distribution on Z1,..., ZD the jammer chooses

dF(z) and knows that the decoder knows E. The communicator chooses dG(O)

and further the decoder knows 0.

In this case we make a "compatibility" assumption, that is, for every 0 and

dF(z) the capacity-achieving input distribution dP(x) remains the same.

While "compatibility" certainly restricts our model applicability, we show by
.4..

example that it is often a worst-case assumption. For instance, we know [Dobr

59] that if AI = L and if the jammner's strategy set is restricted such that for each

distribution dF(z) and quantizer 0, Prob { errorlx I __ f for every x, then the

saddle-point strategy for the jammer is to choose a distribution such that

p(ylz) = I for all y, x if > 1-
MN

and

p(ylz) = M# xif<_-".

= 1 -€ y--x

and the saddle-point strategy for the communicator is to choose a uniform dis-

26
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P !tribution on the input alphabet. In our model this corresponds to choosing the

canonical noise variables so that p(yIx, 0) is a symmetric channel for each 0. Such

symmetry (and thereby "compatibility") is obtained in a number of other situa-

tions as a saddle-point strategy. Under certain conditions, when we have convex

constraints in the M noise variables affecting the M inputs of the channel which

are invariant under any permutation of the M variables (i.e. a "symmetric" con-

straint) then the choice of a uniform distribution on the input and the choice of a

symmetric channel are saddle-point strategies for the communicator and the jam-

;- Amer respectively (see Appendix B). To describe one more example, if we have M

inputs and M outputs,
. %.

yi = ni i=I,...,M iyj

=yj A+ni i=j,

ni are N(O, vi), i = 1,... ,M independent random variables and there is further

the constraint F l vi = c, then, from arguments similar to those in Appendix B,
.-.

it can be seen that the saddle point strategy is to choose vi = and a uniformM

distribution on the input.

Utilization of the "compatibility" assumption allows us to write the above as

min max EG(C(O, F)).
dF(z) dG(e)

F "and

max min EG(C(O, F))
dG(O) dF(z)

27
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where C(O, F) = max 1(0; F) and 1(0; F) = I(X; Y10).dP(x) ,

In this section we prove the existence of a saddlepoint. The main result is
J"

stated in the following theorem:

Theorem 5: There exists a pair of distributions dG*(O), dF*(z)) such that S

EG (C(O, F*)) < EG.(C(0, F-)) < EG'.(C(O, F)) "".

for all feasible dG(O), dF(z), i.e., (dG*(O), dF*(z)) is a saddle point for the game .' '

in case All.

Proof of Theorem 5: The set of all feasible dF 's i.e.

dF(z): i f(z)dF(z) -5 K,} 0 < z, :< b,

is clearly convex and compact. The set of all dG 's is also convex and compact.

We note that for any fixed dF(z), C(O, F) is a continuous function of 0.

Xy I x,0) ] p(ylx, 0,z)dF(z)

is by our earlier arguments a continuous function of 0.

Hence, P,(O) is a continous function of 0. Also C(0, F) = C(Pv,(0)) and

we know that C(Py,(O)) is convex in P,.(O). -

Therefore, for every 0 E 0 3 P,,(O) is not deterministic, C(P,.(O)) is a
4A

continuous function of D,(O). HFnce, for fixed dF(z),C(O,F) = (C(PY.(O))) is '

a continuous function of 0 and so

EG(C(O, F))= C(O, F)dG(O) (27)

28



is a Levy continuous functional of dG(O).

.. ~vSince EG(C(O, F)) is linear it is also a concave function of dG(O) in dG(O)).

Next we note that C(O, F) is convex in dF(z) for each 0 since C(O, F) = C(Ps,(O)).

K Hence

C(O, aF' + (I - a)F 2 ) <a C(O, F') + (1 - a)C(O, F 2 ) 0 < a < 1.

Taking expectations w.r.t. G

JC(O,aF' + (1 a)F2 )dG(O)

< J(C(O F') + (1 - c)C(O, F'))dG(O)

.. EG(C(O,crF' + (1- a)F 2 )

< aEG(C(O, F')) + (1 - a)EG(C(OF 2 )).

-:{ Consequently, EG(C(O, F)) is a convex function in dF(z).

.p*i, Also EG(C(O, F)) is Levy-continuous in dF(z). To prove this it suffices to

,-7q, i. show that for any sequence F converging to F in the Levy metric

5,

- , ( C ( , . ) - G.O , F )

Since convergence in the Levy metric is in our case equivalent to weak conver-

gence [Hegd 87, Appendix C] it suffices to show this for F,, F. However,

lir EG(C(O, Fn))

=lim Je C(O, F,)dG

29
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= j lim C(O, F,,)dG (by the Dominated Convergence Theorem) ,

- C(O, F)dG (since C(O, F) is Levy - continuous in F) -.

-EG(C(O, F))

which proves Levy-continuity in dF(z). From these properties of the objective

function and the convexity and compactness of the feasible strategy sets we recog-

nize that the hypotheses of the Sion minmax theorem of game theory are satisfied

[Aubi 82, Th7, pg 2181. This concludes the proof of Theorem 3.

We note that these saddle-point distributions need not have finite support.

However, in this case we have an equlibrium and with no further knowledge of

each other's choice of strategy, the jammer and the quantizer should be content

utilizing dG*(O) and dF*(z).

Using the Optimization Theorem and the Constrained Optimization Theorem

we can derive necessary and sufficient conditions at these saddle points. Given any

dG(O) and the power constraint we define

U,(Kj, G) sup - EG(C(O, F)) (28)
F ES

hF < Kj

and given any dF(z) we define

V (F) -  sup EG(C(O,F)) (29) ...

G E

where Q is the space of distributions on E. Then we have ,.

Theorem 6: The saddle-point strategies dF, dG" satisfy to the following inequal-

30
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ities:

EG-(1--Iz;0, -)- Af (z))dF(z)) <5 EG- (-C(9, F)) - AK.J (30)

for some A >_ 0, for all F where

7 (z; 0, F) P(x)p(yIx, z,9) log f p(ylx, z, O)dF(z)S. 9 ,F E P(x) fp(ylz, z, O)dF(z)

Also

EG(C(0, F*)) EG.(C(O, F*)) (31)

for all G.

Proof of Theorem 6:

For any F denote the weak derivative of EG(C(O, F)) at Go as Dr(E(C(O, F))

and for any G denote the weak derivative of EG(C(O, F)) at Fo as DF(EG(C(O, F)).

Using Lemma 3 and the Dominated Convergence Theorem, we have

.. DF, (E(-C(O,F2 )) = EG(- J(z;0,F,)dF2) + EG(C(O,FI)) (32)

for any F1 , F2.

.%.. -: Also

DG1,(EG,(C(O, F) = EG(C(O, F) - EG, (C(O, F). (33)

Now letting F, = F*, G, = G" in the first equation we have, using the Con-

strained Optimization Theorem and the Optimization Theorem and the properties

of EG(C(9, F)) as in Theorem 2, that a necessary and sufficient condition for F"

to achieve TT,(Kj, G*) is

EG.(- (,(z;OF) - Af(z))dF(z)) < EG.(-C(O, F)) - AK., (34)
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for some A > 0, for all F. i.-

Letting F, = F', G1 = G* in the second equation gives us similarly that a

necessary and sufficient condition to achieve V,(F °) is

EG(C(O,F*)) 5 EG.(C(O, F')) (35)

for all G.

Since at a saddle-point U,(Kj, G) and V,(F*) are simultaneously achieved,

the theorem follows.

4.1 The Remaining Cases

Case BIX: Theorem 3 holds with F(z) as a one-dimensional distribution.

Case CII: Although S is compact, it is not convex and so we cannot demonstrate '

that there is a saddle point strategy.

Case DII: Again we have that EG(C(O, F)) is a Levy continuous functional -.

of dG(O) and is concave in dG(O). Also EG(C(O, F)) is Levy continuous in

(dF(z),..., dFD(z)). However E(C(O, Fl,... FD)) is not convex in (F,,..., FD). 4._

Hence we cannot assert the existence of a saddle point in this case.

4.2 Fixed Quantizer

Before concluding this section we also point out that if we did not have ran-

domized quantization then without "compatibility" the game would have a saddle-

point where the jammer's saddle-point distribution need be concentrated at at most

M(L - 1) + 2 points. We summarize this in Theorem 7.

32 :1
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Theorem 7: For any quantizer 0, there exists a pair of distributions dP*(x), dF*(z)

06 such that

1(0, P, F-) < 1(0, P-, F-) < 1(0, P-, F) (36)

"% for all feasible dP, dF. Moreover dF*(z) can be chosen to be concentrated at at

most M(L - 1) + 2 points and necessary and sufficient conditions for dF'(z) and

dP*(x) are for some A,, A2 > 0

- i(z; 0, F*) < -1(0, P*, F*) + AI(f(z) - Kj) (37)
A,

for all z E K and

.. ,. - i(z; 0, F*) = -1(0, P*, F*) + AI(f(z) - Kj) (38)

.o. ,.fi for all z E Eo where i(.;.,.)is as defined in Theorem 2 with G concentrated on 0.

Also

.I(0, P, Fo) = A2  (39)

for all x i P*(x) > 0 and

.. (0, P*, F*) < A2  (40)

for all x E P*(x) 0 where

(YIx, 0)1 (0, P, F) __ 'p(yl x,0) log E. po(X)p(ylx, 0).
Y

Proof of Theorem 7:

From the proof of Theorem 5 we know that all we need to show is that 1(0, P, F)

-. is (Levy) continuous in dP(x). We show this by considering any sequence dP,,(x) -X

33
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dP(x) and showing 1(0, P,F) 1 (0, P, F). Since x belongs to the finite set A,

weak convergence is equivalent to convergence in any fini te- dimensional metric.

Now

p(y~z, 9)-11(9, P,, F) - 1 (0, P, F) I I E P, (x)p(y Ix, 0) log ~P 1 xpyx )-

- E P(X)p(y IX, 9) log z~~~
.r~~y P(x)p(y IX, 9)1

p(y iX, 9)I Z EP,,(X)P(yix,9) log ~P(~~~,9
zr,y .( )( IX,0

p(ylIz, )
- ,P"(xWAY IX, ) log ;7~xp~l, 90)1

p(y I, 9)+ EP.(X)p(yx, 9) logZPxpy B'

1 E P, (XYp IX, 0) 11 log P,(X)p(YI X, 0)~

+ ZDIP(x) - P(x)I (41)

where D =max.,p(Y X, 0) log pyx9

< LDJ logE.P()Yi,)

+ E DJP,,(x) - P(x)l. (42)

Again since A is finite we can say that for all 6 > 0 3N such that for all n > N

P (x)
P(X)

-6< P'(X)P(Y'X,9) < I + 6 Vx E A
P(X)P(Ylx, 0) r

34
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A 4

< ZP"(x)p(ylx, O) < 1+6 Vx E A. (43)

E P(X)pAyIX,9)
44 . By the continuity of the log function we can say that VE > 0 36 > 0 E

- < I log P,(x)p(yjx, 9)
-E. P (X)p( F, )1

" "The second term in (41) can also clearly be made < f for sufficiently large n.

Thus the continuity of I(9, P, F) w.r.t. P is confirmed and the first part of the

theorem follows. The bound on the number of points of support of dF* follows

". from Theorem 1(a). The necessary and sufficient conditions are derived as before

- from Theorem 3 and well-known results about channel capacity [Gall 68, pg.91].

- 5 Conclusions

A' * We have constructed fairly general channel models which are capable of repre-

- senting a number of jamming situations. The jammers we have considered have

all been non-adaptive and using results from the compound channel we are able

to give operational significance to our minimax performance measures,i.e. we can

*. - assert the existence of encoders and decoders which can perform at arbitrarily low

probabilities of error at rates close to our performance measures. Our analysis is

S." "i'also clearly applicable to many restrictions on the jammer's strategy set other than

the ones we have considered.

. -In the case with the decoder uninformed (case I) we have shown that the worst-

case jammer strategy (as well as best communicator strategy) needs only be one of

'p 35
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the class of distributions with finite support. We have a bound on the number of .

these points of support in terms of the sizes of the input and the output alphabet. - .

Thus we have reduced the computation of the worst case jamming strategies to a

finite-dimensional non-linear programming problem. Moreover we can characterize

these distributions by necessary and sufficient conditions which are fairly easy to .

test.

In the cases with the decoder informed we reduce the communicator's strategy

set (either by using the "compatibility" assumption or by fixing a quantizer) . In

this case when we have convexity with respect to the jammer's strategy (as in cases

All and BII) we are able to demonstrate the existence of a saddle-point strategy.

For the case with non-randomized quantization we are further able to characterize

these saddle-point strategies using the earlier theory. . ,

As we have mentioned earlier all the above presupposes non-adaptive jamming.

The compound channel model which we use indirectly by our choice of objective

function is appropriate to use in this case. We can allow for more sophisticated

jammers if we incorporate the cases where the jammer's strategies are allowed to

depend on the previous (and present) channel inputs. The appropriate channel

model to use then is that of the arbitrarily "star" varying channel (A*VC ) [Csiz .' *-4

81, pg.233]. This model generalizes the arbitrarily varying channel (AVC) and

includes it as a special case. It is known that the m-capacity (i.e. capacity with

maximum probability of error over all the codewords) of the A*VC is the same as

that of the corresponding AVC [Csiz 81, pg.232]. This capacity is known for the

r
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case of binary output alphabet (and finite input alphabet) and is known to be equal

to max mini(X; Y) where X and Y are the input and the output respectively, W

is any channel chosen from the set of channels W and W' is the row-convex closure

of W' [Csiz 81]. In our case the jammer's strategy set corresponding is already

row-convex closed and hence the appropriate programs would be

a) For the communicator:

max min I(G, F)
(dG(e),dP(z)) dF(z)

b) For the jammer

min max I(G, F)
a ,dF(z) (dG(o),dP(x))

which is the same objective function as we have used. Similarly, in the case with

decoder informed we would obtain the same objective functions. Thus, all the

results derived in the previous chapter for the case of mutual information can be

. extended to the case of the A*VC channel with binary output. This model may

be viewed as a worst-case representation of adaptive jamming. Unfortunately the

m-capacity of the AVC is as yet unknown for output sizes greater than 2. On the

other hand the a-capacity of the AVC (i.e. the capacity with average probability

.- of error) is known to be either 0 or else max min I(X; Y) where W is the convex
5%'

.,.: ":. P(x) wEW

closure of the set W" to which W belongs [Csiz 81, pg.214]. Since in our model

the set of channels is convex as well as row-convex the a-capacity is known to be

greater than 0 iff the m-capacity is greater than 0 [Ahts 781. Thus with average

probability of error whenever the jammer's strategy set is such that he cannot force

the capacity to be 0 then all the results of the preceding chapter extend to the

-w '37
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case of the AVC channel.
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Appendix A

Lemma 3: 1'.(G; F2) f fi(z; G, FI)dF2 (z) - I(G; F)

U.where i'(z; G, Fi) p=~~ I (,Z o fp(ylX, z)dF
~~,~p~~p~y ~EzXlo Zxfp(ylx,z)dFi

Proof of Lemma 3:

I' 1(G; F2) =lim-! {Zp(x) (f f p(yx~z,)[(1 - a)dFi + adF2]dG(9)).

log (f fp(y Ix, z,) [(1 - cr)dF1 ± adF2 dG(O))
EP(x)(f fp(y Ix, z, 0[1- a)dFi + adF2]dG(9)

IX

E ZP(X)(f f p(ylx, z, G)dFidG(9)).

log (f fP(yjx,z, O)dFdG(O)) 1.(4
EZP(x)(f f P(ylx, z, O)dFidG(9)

Denoting f P(ylx, z, 9)dG(9) as p(y Ix, z)

I(F 2 ) al frnl:P(x) [fP(Ylx, z)[(1 - a)dF +±adF2]

z., fP(YfX, z)[(l - a)dF1 + a dF2]

? EP jP(IX, )(( - cr)dFi + adF]

- p(ylx,z)dFIlog f~t~~F
~PWxf Xy I x, z) dF1

urn- px)( p(Ylx, z)[(1 - c)dF1 + adF2I1 P I(YlsixzadF1og
CY1o a 

- +a

'Z E ~P(y ) N x z)[(I - a)dF + a dF2

-Jp(yjx, z) adF, log ((f(I )( - a)dF + adF2I
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+ h A . . . .'. .p-- - - - - - - - - - - - - - - - - - - - - - - - -- a d F + a d F 2

alo ,Y F~x~p~yl, -)(l a~d, + dF.

L

p~y , z)dF, og fP(Y X, ~dF
P~x) p~y x, ) dF

a + b*4 .).

IN

If f p(ylx, z)[(1 - a)dF1 + adF2 I
±hrn Zp(x)j p(yx,z)dFuog -c~F d']I'4

,Y E~~p(x)fp(y Ix,( -)dF ad

Byahoing a equtienc ~~0aduigwa ovrec f( ~)F

a)dF2 to dF1 ~ + "2

.el f p(Yfx, z)[(1 - c)dFi + adF21

S[(I:x) IP(ylx, z) l (Za)FP(+ adz1 (l' -a)dF1

Takigee dervtv E P4.N .z (l-ad,+QF
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2 Appendix B

"Here we consider a communication game with two players, player A who chooses

F.+ an input distribution r on the M-ary input alphabet, and player B who chooses

". " "the M x L transition probability matrix. Let X and Y denote the input and

11 %. output random variables respectively and let ni denote the distribution of the

random variable associated with the conditional density p(yjx,). Let the set of all

. ' "feasible nq's (= (ni,.... nm)) be compact. The channel p(ylx) is a function of n (

(n 1 ..... , nM)). Assume this function is finear and that for a choice of ni -- n,i=

2' 1 ~I.., M the channel chosen is symmetric. Let l(r, a7) _'= I(X; Y) when A's choice

.. . is r and B's choice is a. Let n,...,nm be constrained by f(n,.,nrM) <5 ci

*1

:'. invariant under any permutation of nl,..., rim. Then a saddle-point strategy exists

. Hre webonsdracmuiatohaewtw playersad o player A wh o chseauirmdtibiooste

Ir .. jnn) <~* <* 5Irn

.,. where r' corresponds to the uniform input distribution.

-'- Proof: Step 1: I(r,n*l) <5 l(r*,a*)

This follows from the fact that the mutual information between the input and the

,. output of a symnmetric channnel is maximized by the uniform distribution.

-., Step 2: I(r*,n*) <5 I(r*,n)

41
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Since I(X; Y) is a convex function of p(ylx) which is linear in a, I(r,n) is convex

in n. Moreover, given the form of the constraints the set of feasible n's is a convex

set.

Now for any e > 0 let infI(r,a) + be achieved at someni # n" Then we ..

show I(r°,n *) < I(r*,n1 ) proving that the minimum is also achieved at a*. The

use of a uniform distribution on the input and the symmetry of the constraints

implies that for any permutation of 1 (-a' say) we have a new channel p*(ylx) "65

which involves just a relabelling of the inputs of the original channel. The mutual

information I(r*,n1 ) is equal to I(r,n'). Now consider all the M! permutations

of a, = a : E T ( all the permutations are not distinct but it does not matter). '. ,

Take the convex combination -, EETfRn' = ai(say). Every component of a, is

equal to -L n1 ,. Also from the convexity of I(r*,a) w.r.t. a we know that

1
T!ET cE

= I(r*,n) .n

Therefore

and hence inf I(r, a) + e is achieved at f too. The result then follows from the

observation that I(r°,n) is concave in r.

42.
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